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ABSTRACT

This research quantifies the voltage distortion over the broad range of operating conditions
experienced by a Naval warship. A steady state model of an Integrated Power System (IPS) was
developed in a commercially available power system simulation tool. The system chosen for this
study was a three-phase, 4160 VAC, 80 MW power system with a 450 VAC bus to supply
traditional ship service loads. Sensitive loads, such as combat systems equipment, are isolated
from the harmonic content of the 450 volt bus via solid state inverters. Power generation for this
system included two 30 MW and two 10 MW generators. The sizing of these generators was
based on operating configurations that would result in the best fuel efficiency under the most
common loading conditions. Model components were simulated and compared to data recorded
for the U.S. Navy's Full Scale Advanced Development (FSAD) test system for the IPS at the
Philadelphia Land Based Engineering Site (LBES). The propulsion motor used in the
simulations was developed based on the advanced induction motor installed at LBES. Various
loading conditions, including battle, cruise and anchor were simulated for both 10°F and 90'F
ambient design conditions and with propulsion loads ranging from 0% to 100%. Numerous
system configuration changes were implemented to determine their impact on system harmonics.
These included operating the propulsion converter front end rectifiers in both controlled (varying
commutation angle) and uncontrolled (diode bridge) configurations; implementation of both
twelve and six pulse rectification; and installation of a tuned passive 5th harmonic filter. The
simulation results are compared to both IEEE Std 519-1992 and Mil-Std 1399.
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Chapter 1 Introduction

1.1 Purpose

The purpose of this thesis is to develop accurate models of power electronic devices that

will be installed on future naval warships. These models will be used to analyze the harmonic

distortion on the main electrical busses under a variety of operating conditions. The impact of

harmonic mitigation techniques on an Integrated Propulsion System will also be analyzed.

1.2 Problem

The Navy envisions a significantly greater role of electrically powered systems in future

naval warships. This is represented by the commitment to an Integrated Power System (IPS) for

the next generation warship.[1] A ship configured with IPS uses an electrical motor to drive the

speed of the propeller, eliminating the need for a reduction gear and long shaft. A common

electrical bus provides the ships electrical power and propulsion power. A traditional non-IPS

surface combatant dedicates over two thirds of its power generation capability to turning its

propellers. This generation capacity is not available for anything other than propulsion and is

typically represented by four prime movers. Additional prime movers are required for

generation of electricity for ship loads. Some of the advantages of an IPS arrangement are listed

below.[2]

"* Increased fuel economy due to the efficient operation of prime mover

"* Arrangement flexibility due to the elimination of large mechanical shaft

components and the reduction of total prime movers

"* Availability of a large amount of electrical power for non-propulsion use

"* Ability to accommodate the electrical power needs of future military systems

"* Reduced manning requirements due to high levels of automation and control

The successful implementation of IPS is only possible due to advances in high voltage,

high power semiconductor switching devices. These advances in power electronics have made

propulsion systems utilizing variable speed AC motor drives cost competitive with traditional

mechanical drive plants. [ 1] [2] Additionally, weapons systems and high power radars are

expected to have a similar power electronic interface with the main bus distribution systems.
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The installation of these power electronic devices will have a negative impact on main

bus power quality. The deleterious effect is due to the fact that these loads do not draw purely

sinusoidal current. The non linear circuit elements in these circuits distort the current waveform

and result in harmonics of the fundamental frequency. In this paper the terms non-linear and

harmonic will be used when describing loads exhibiting these characteristics. The power supply

for these loads usually requires use of a bridge rectifier at the front end. The bridge rectifier

draws current at harmonics of the fundamental frequency from the distribution system. When

these currents propagate through the distribution system they develop voltage across the

impedance of the source. This leads to distortion of the voltage waveform seen by all loads in

the distribution system. Distortion of supply voltage can lead to improper operation of sensitive

electronic equipment and overheating of certain elements in the power system such as motors,

transformers, and cables.

Interest in power system harmonics dates to the early 1930's when utilities first noticed

distorted voltage and current waveforms on overhead transmission lines. At the time, their

interest was primarily in the effect on electric machines, telephone interference, and power

capacitor failure. [6] Over the last twenty years the proliferation of electronic switching into

power electronics devices has caused renewed interest in power system harmonic studies.

Concerns over the increase in non-linear loads have shown the need for harmonic studies as a

standard component of power system analysis and design. [7]

A navy ship with IPS can be regarded as a small scale, autonomous, industrial type power

system sharing the same power quality concerns as the utilities. The modern warship, like the

continental grid, has experienced the same proliferation of power electronics and shares the need

for analysis of power system harmonics. However, there are several differences between a land

based distribution system and ship based system. [8] They are:

"* The ships power system is completely autonomous. Reliability is essential for

safety of the ship and crew

"* The relative rotational inertia of the prime movers is small compared to the

electrical load

"* The ships distribution system consists of AC and DC voltage at different

magnitudes and frequencies

"* The ships grid has cables of short length compared to land based systems
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A significant portion of the total ships load draws non-linear current

These differences make the accurate representation of harmonic generating devices within the

IPS imperative for the design and analysis of this system.

1.3 Scope

This research will be accomplished in three steps. The fist step will involve developing

accurate models of non-linear power system components for an IPS. In the second step, a

notional distribution system with loads representative of a future surface combatant will be

developed. The final step will be to analyze this notional IPS for voltage and current distortion

over the wide range of operating conditions experienced by Navy ships at sea.
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Chapter 2 Measures of Distortion

The simple full bridge rectifier shown in Figure 2-1 and its associated voltage and current

waveforms, Figure 2-2 and Figure 2-3 , will be used to illustrate some characteristics of power

system harmonics.

Figure 2-1 Full Bridge Rectifier
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• +

Vdc

Figure 2-2 Full Bridge Voltage and Current
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Figure 2-3 Bridge Rectifier with Output Filter
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Figure 2-2 shows the voltage and current waveforms of the bridge rectifier with the

output capacitor set at 0, and assuming ideal diodes. The source current is transferred between

the diodes the moment the source voltage changes polarity. In a real bridge rectifier, the source

will have some amount of inductance and typically an output capacitor will be installed to reduce

the ripple of the output voltage. Figure 2-3 shows the same bridge rectifier waveforms but now

with an output capacitor. The output capacitor prevents the diodes from turning on until the

polarity of the source voltage is greater than the voltage on the output capacitor. This results in

regularly appearing distortion of the source current at a multiple of the source frequency as

evidenced by the source current waveform of Figure 2-3. This distortion is referred to as

harmonic distortion.

In order to measure harmonic distortion Fourier analysis is used. Fourier analysis allows

us to represent any periodic wave form as a Fourier series. [9][10] [16] Consider a periodic

functionf(t). This function can be represented as:

f(t) = CO + , Cn cos(nx + Oj)
n=l

Equation 2-1
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Cn = • + Bn On =tan-'(-B./A,,)

With T=21rco the coefficients An, Bn, and Co are defined as: (note: T must be a multiple of a

period)

An =- f(t)cos(nci)dt Bn = T-f (t)sin(nao)dt CO= f (t)dt

Equation 2-2

Using Equation 2-1 and Equation 2-2 we will determine a measure of the distortion of the

line current in Figure 2-2. Assume that the voltage input is purely sinusoidal and is given by:
v5 -2Vi sin colt

Equation 2-3

The input current into the bridge rectifier can be written as a sum of its Fourier components.

i, (t) = i sl (t) + I i ,h Wt

h#1

i'l= i]2IIl sin(o 1t - 01) and ih = 4Iih sin(coht - Oh

Equation 2-4

The rms value of i, (t) is:

I, *Ji,(t)dt

Equation 2-5

Substituting Equation 2-4 gives:

I,= 1s2 1+ 
2h

Equation 2-6
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Define the distortion current, (idis(t)), as that component of the current not at the fundamental

frequency then this current (rms) is given by:

SII =i-/

7~1

Equation 2-7

%THD can now be defined as:

%THD= =100* =100*- =100"

Is1 Ish 1,I

Equation 2-8

Another useful measure of distortion is power factor (PF). [9] [10] Consider the voltage

and current waveforms shown in Figure 2-4. The voltage is purely sinusoidal while the current

is a distorted waveform containing the first and fifth harmonic.
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Figure 2-4 Current Distortion
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The average power can be calculated by:

P = p(t)dt = f- vs (t)i, (t)dt

Equation 2-9

Substituting Equation 2-3 and Equation 2-4:

P= 1J f-vV sin Oat *JIsi, sin(O)lt- 1)dt=VsIs cosobiTo

Equation 2-10

Note that the only component of the current that contributes to the average power drawn from the

source is the fundamental current. For sinusoidal quantities the apparent power (S) and the

power factor (PF) are defined as:

S =VSIS
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Equation 2-11

P
PF=-

S

Equation 2-12

Using Equation 2-10 and Equation 2-11:

PF = Vl,,cos A =,Cs_ c
VsI, Is

Equation 2-13

Equation 2-13 shows that when dealing with distorted waveforms there are two components that

effect PF, the displacement factor, k, = cos 0, and the distortion factor, kd = I"a kd. ko is the
Is

familiar power factor angle and represents the phase difference between the voltage and current.

kd is a measure of the amount of distortion in the line current of a load. When both the current

and voltage are sinusoidal kd = 1. It is sometimes useful to represent PF using THD.

1 1
PF kdk - isko ko

1+ THD 2

Equation 2-14
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Chapter 3 Harmonic Analysis

Harmonic analysis of power systems can be conducted in both the frequency domain and the

time domain. An overview of the various techniques will be presented.

3.1 Frequency Domain

Frequency domain analysis requires development of the admittance matrix of the system.

This method is based on multi-port network theory. The positive sequence admittance matrix is

developed from component level two port admittance parameters. A detailed discussion of this

method can be found in [6] and [16]. The admittance matrix must be determined for each

frequency of interest. Various frequency domain algorithms are used in conjunction with the

admittance matrix in order to conduct the analysis.

3.1.1 Frequency Scan

The most common and also the simplest method of analysis is called a frequency scan. This

method involves the solution of Equation 3-1:

ly 1-I= [I.]

Equation 3-1

Where [Y, ] is the admittance matrix, L,'] is the known current vector, and LV] is the nodal

voltage. The subscript n denotes the integer multiple of the base frequency. The system

response as a function of frequency is determined through solution of Equation 3-1 at integer

multiples of the base frequency. If a one per unit sinusoidal current is injected into the system at

a specific point, the corresponding node voltages will represent the driving point impedance of

the system as seen from this point. The frequency is varied from the base frequency to the

highest harmonic frequency of interest and then the impedance over this range can be plotted.

The peaks of this plot correspond to parallel resonance conditions (high impedance to current

flow), and the valleys of the plot correspond to series resonance conditions (low impedance to

current flow). This method provides an excellent visual indication of resonance conditions and
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is especially useful when trying to assess the impact of the addition of a new piece of equipment

which draws non-linear current. [6] [16]

3.1.2 Current Source Injection

This method requires information about the magnitude of the current drawn by a non-linear

load in addition to the admittance matrix of the network the load is connected to. Many

harmonic sources can by characterized by a typical spectrum. These spectrums can be found in

references such as [6],[9], and [20]. Equation 3-1 is solved at specific harmonic frequencies and

the voltage at that frequency is obtained. The magnitude of the voltages at each harmonic

frequency can be used in Equation 2-8 to determine THD.

There are some limitations when using this method for calculation of system distortion.

When more than one non-linear load is present this method loses accuracy because it does not

accurately reflect the phase angle of each harmonic. Studies have shown that when more than

one non-linear load is present a significant amount of cancellation, due to difference in phase

angle, takes place. [7] [15] This method is also limited in that many non-linear loads present vary

different harmonic spectra depending on load level or control strategies. Figure 3-1 and Figure

3-2 show the input current to a six pulse rectifier operating at two different thyristor firing

angles. Clearly the harmonic content of these two signals is different.

Figure 3-1 Six Pulse Rectifier alpha =0 degrees

Nbin: Graphs
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Figure 3-2 Six Pulse Rectifier alpha =45 degrees
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3.1.3 Harmonic Load Flow

This method requires that non-linear load current be represented as a function of harmonic

voltages existing at the device terminals and control variables applicable to the load (ie thyristor

firing angle in a rectifier). In this method variations as depicted in Figure 3-1 and Figure 3-2 can

be accommodated. Each load is represented as follows:

Where Ca, Cb,... represent control variables for load parameters

VI, V2 .... Vn represent harmonic voltages at the device terminals

I. = F(Va,V 2,...V., Ca, Cb ......

Equation 3-2

This representation is used in conjunction with Equation 3-1 to form a complete mathematical

model of the system. These equations are then solved iteratively using Newton or Gaussian

algorithms. The limitation of this technique is that in many cases a representation of the non-

linear loads in the form of Equation 3-2 is not possible. When this is the case, techniques that

represent non-linear loads by their time domain differential equations have been

developed. [6] [16] [20]
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3.2 Time Domain

Harmonic studies involving widely varied load patterns are often best suited to simulating a

complete time domain model using electromagnetic transient programs such as EMTP or

EMTDC. These programs are based on the principles outlined in [11]. EMTDC

(Electromagnetic Transients including DC) was originally developed as a simulation tool for the

Nelson River HVDC Power System in Manitoba, Canada. EMTDC represents and solves

differential equations in the time domain given a fixed time step. This allows the response of the

system to be solved at all frequencies, limited only by the user selected time step.[ 12] The

method primarily used in this research will be using EMTDC with the graphical interface of

PSCAD.

The network impedance can be represented by models of the components primarily

responsible for the impedance properties of the system. For example, in rotating machines the

magnetic field created by stator time harmonics rotates at speeds significantly higher than the

mechanical speed of the rotor. Therefore, the inductance of a synchronous machine can be

modeled as the negative sequence impedance or the average of the direct and quadrature

subtransient impedances. An induction machine can be approximated as the locked rotor

impedance. Linear passive loads can be modeled as an aggregate load if reasonable estimates of

real power and reactive power are available. [6] [20]

In large networks it may be necessary to represent a portion of the network by its dynamic

equivalent. This strategy represents the driving point and transfer impedances between busses by

a lumped RLC branches. An overview of this technique is outlined in [6].

Harmonic sources can be represented as rigid harmonic sources, as a switching function, or

with detailed models. Rigid harmonic sources are described by Equation 3-3.
n

i(t) = I1 cos(wt + 01 ) + In E cos(nwt + On)
2

0,, = nO, + (n +1)2"

2

Equation 3-3

The magnitude of the current can be obtained from typical spectrum or from measurements and

the phase angle can be determined from the load power factor.
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The switching function can be used to determine a state space model for a converter.

Consider the Up/Down converter shown in Figure 3-3:

Figure 3-3 Up/Down Converter

Vin q "L L Rc Vout

C TVc

Let the switching function q(t) = 1 when the transistor is on and q(t) = 0 when the transistor is off

and let q'(t) = 1-q(t). The following equations define the circuit when the q(t)=1.

VL (t) =L diL v, t

dt

c(t)=Cdvc 1 vc(t)
dt R+Rc

Equation 3-4

When q(t)=O,

VL(t)=L di R [-RciL(t)+vC(t)I

dt R+Rc

Equation 3-5

Combining Equation 3-4 and Equation 3-5 and introducing q(t) results in the state space model

of the Up/Down converter.[9]

diL • R Rcq'(t)iL(t)+ q'(t)vc (t)]+ 1q(t)Vi(t)

dt L(R +R2 L
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dvc -1 ,(t)i,(t)+v,(t)]

dt C(R +Rc)

Equation 3-6

The final method is through a detailed representation of the non-linear load and its

associate control mechanisms. Weak systems, such as an IPS, require this method in order to

accurately represent harmonic distortion. The simulation consists of a transient phase followed

by the steady state phase. The transient phase is due to the network natural frequencies and the

interaction between network voltage and frequencies and converter controls. The transient phase

can last as long as ten fundamental cycles. At the end of the transient phase, steady state

conditions should be verified. For example, the average DC current of a converter could be

checked. At steady state this current should be constant. Once the steady state is reached,

programs such as EMTP and PSCAD/EMTDC contain tools to extract the frequency components

of the desired voltages and currents.
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Chapter 4 Model Validation

This chapter will focus on the steps taken to validate the PSCAD/EMTDC model of an IPS.

The validation consists of three steps. The first step (section' 4.1), is a simple comparison of

results generated on a test system simulated in ACSL and SABRE. Measured data was not

available from the ACSL and SABRE simulations so the comparison was based on the

magnitude and shape of the waveforms. The second step (section 4.2), was accomplished by

comparing the PSCAD/EMTCD simulation results to test results measured at the IPS Land

Based Test Site (LBES) during the Full Scale Advanced Development (FSAD) system testing

conducted on June 28 and July 1 of 1999. The final step (section 4.3), was to compare

PSCAD/EMTDC simulation results to the current source injection method outlined in 3.1.2. A

simple plant consisting of a motor drive, transformer, and resistive load was constructed for the

purpose of the comparison.

4.1 Test System Comparison

The test system used in this comparison is shown in Figure 4-1 and characterized in Table

4-1. S.D. Sudhoff, S.F. Glover, B.T. Kuhn simulated the test system as part of their work in

validating models for LBES. The system was obtained from [17]. This was meant as a

preliminary comparison. The only data available for comparison were the reproductions of the

waveforms. The following figures compare the simulation results for the a-phase current into the

rectifier. The PSCAD plot has a very strong correlation to the plots from the SABRE and ACSL

simulations. The magnitude of the current as well as the frequency of oscillations is similar. Due

to the lack of the underlying data for the ACSL and SABRE simulations a more detailed

comparison can't be made. However, the similarities in shape, magnitude, and oscillation

frequency of the output waveforms suggest that the PSCAD has accurately modeled the test

system. Figure 4-3 and

Figure 4-4 were reproduced from [17].
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Figure 4-1 Test System
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Table 4-1 Parameter Values for Test System

Parameter Symbol Value

Source frequency F 60 Hz

Line to neutral peak voltage Vpeak 3396.6 V

AC line inductance Lac 391.7 gH

AC line resistance Rlac 1.272 mK

Thyristor on state voltage drop Vscr 1 V

Thyristor on state resistance Rscr 130 ýLQ

Snubber capacitance Cs 9 gF

Snubber resistance Rs 3.33 Q

DC link inductance Ldc 666.67 gH

DC filter capacitance Cdc 30 mF

DC link resistance Rldc 3.3 mQ

Load Resistance Rload 4.13 Q
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Figure 4-2 PSCAD/EMTDC Simulation
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Figure 4-4 SABRE Simulation
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4.2 LBES System Comparison

LBES is a full scale prototype of a 4160-volt IPS. The components online during the study

were the 21 MW 4160 V generator, a 19 MW 15 phase induction motor, and a three phase filter

tuned to the 51h harmonic. The components are shown in Figure 4-5.

Figure 4-5 LBES Components

19 MW 15 phase Induction Motor Drive

_ I-DC Link Inverter
21 MW Generator Rectifier

3 phase filter

4.2.1 Generator

The Generator was modeled in PSCAD/EMTDC as a modified version of the general

synchronous-machine steady state equivalent circuit. Normally the machine is modeled as an

ideal voltage source behind a synchronous reactance. The synchronous reactance is the effective

reactance seen by a phase of the machine under normal machine operations. In this case, the

synchronous reactance was replaced with the subtransient reactance as that value is the

impedance of interest in harmonic distortion studies. The generator was initially modeled using

the component library synchronous machine model in PSCAD/EMTDC. This model is

programmed in state variable form using generalized machine theory and can take as input either

equivalent circuit data for the machine or the machines time constants. A simulation was

performed with the synchronous machine model with the parameters in Table 4-2. A second

simulation was also conducted with an ideal voltage source behind an inductance equivalent to a

20% subtransient reactance for a 25 MVA machine. Figure 4-6 and Figure 4-7 show the

generator current and motor current for the detailed model and the steady state model. It can be

seen that the simplified steady state method produced identical steady state results as the detailed
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model. The voltage distortion of both simulations was also recorded. The detailed model

produced 18.52% voltage distortion while the steady state model produced 18.47% voltage

distortion. The detailed model slowed the simulation down considerably without providing

improved results, so the ideal voltage source behind a subtransient reactance method was

implemented.

Figure 4-6 Simplified Model Motor and Generator Current
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Figure 4-7 Detailed Model Steady State Generator and Motor Current
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Table 4-2 Generator Parameters

Parameter Value

Nominal Voltage (LL RMS) 4160 V

Rated MVA 25 MVA

Fundamental Current Limit 3469 A

5 th Harmonic Current Limit 312 A

7 th Harmonic Current Limit 277 A

Synchronous Inductance 0.36 mH

"D axis Unsaturated Reactance Xd 2.0 per unit

"D axis Unsaturated Transient Reactance Xd' .25 per unit

"D axis Unsaturated Subtransient Reactance .2 per unit

Xd"

Q axis Unsaturated Reactance Xq 1.85 per unit

Q axis Unsaturated Subtranient Reactance .2 per unit

Series Line Resistance 2.27 mQ

Line to Earth Capacitance 0.145 jtF

4.2.2 Harmonic Filter

The harmonic filter is used to filter fifth harmonic currents drawn by the propulsion motor in

order to protect the generator from heating. The filter parameters were obtained from [18] and

are shown in Table 4-3.

Table 4-3 Harmonic Filter Parameters

Parameter Value

Filter Inductance 1.19 mH

Series Resistance 12 mQ

Filter Capacitance 282 jiF

Capacitor Voltage Limit 2900 V

Reactor Current Limit 656 A
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In [17], the impedance characteristics of the harmonic filter were calculated from the measured

current and voltage wave forms. It was found that the calculated component values of the

capacitance and inductance were 0.58% and 10.03% higher than the values listed in Table 4-3.

This resulted in the magnitude of the impedance at the 5th harmonic increasing from 0.2432 92 to

0.4532 Q. The values calculated in [17] provided the most accurate results in the simulation and

were implemented in the model.

4.2.3 Induction Motor

The propulsion motor installed at LBES is a 19 MW, 15 phase squirrel cage induction

motor driven by a 15 phase converter. There are three identical modules within the motor drive

consisting of a six pulse rectifier, DC link, and H-bridge inverter. Each module supplies five

phases to the induction motor. The Induction motor was simulated as three separate controlled

six pulse rectifiers with a DC link feeding a resistive load. The converter is operated in a

controlled fashion to resolve DC link stability issues discovered when the hardware was initially

operated with the rectifier in an uncontrolled mode. The total power of the motor was

distributed evenly to each module. The resistive load and firing angle of the rectifier were

controlled to produce different power levels. The motor and its AC drive circuitry were not

modeled because they would have no effect on the power system harmonics; the front end

rectifier and DC link isolate the main bus from the motor drive inverter. Model parameters were

obtained from [17] and are shown in Table 4-4 and Figure 4-8. A single module for the

induction motor drive is shown in Figure 4-9.

Table 4-4 Motor Drive Parameters

Parameter Value

Snubber Resistance 60 Q

Snubber Capacitance 0.5 gF

DC Link Inductance 2.6 mH

DC Link Capacitance 670 gF
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Figure 4-8 Firing Angle vs Speed
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The component library for PSCAD/EMTDC contains a model for a DC converter. The

converter consists of a six pulse Graetz converter bridge, an internal phased locked oscillator

(PLO), valve firing and blocking controls, and RC snubber circuits. The converters basic

operation is as follows. The AO input is the ordered firing angle for the converter. With an

input of zero degrees the rectifier operates as a line commutated six pulse rectifier. A detailed

description of line commutated converters will not be presented but can be found in [9] and [ 10].

The DC link voltage can be controlled by varying the firing angle alpha. The resulting average

DC link voltage is:
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( ) = 23-v cosa

Equation 4-1

4.2.4 Simulation Results

Data for steady state testing at LBES was obtained from [17] and [19]. The data consisted of

current measurements for the propulsion motor drive, the harmonic filter, and the generator.

Main bus voltage was also measured. The measurements consisted of the magnitude and phase

for each harmonic up to the 25th harmonic. In order to compare simulation results to the test

results, a MATLAB script was written that reconstructed the time domain signals of the

measured data from the phase and Fourier coefficient data. Simulation signals and measured

signals were normalized to the fundamental magnitude. The MATLAB script is contained in

Appendix A. The primary objective of this simulation was to ensure that an accurate model for

the motor drive circuit could be constructed; therefore this section will only present the

comparison of the current and harmonic distortion of the motor drive. Plots of the filter current,

generator current, and line voltage can be found in Appendix B. Simulation of the motor drive at

10%, 50%, and 90% rated power were conducted. Results are shown in Figure 4-10 through

Figure 4-15 and Table 4-5. The simulations are more accurate at the 50% and 90% motor power.

The overall distortion error is lesgs than 2% for each of these simulations. At 10% motor power

the distortion error is slightly under 5%. The error percent increases with harmonic order due to

the smaller magnitude of the higher harmonics relative to the fundamental magnitude. At the

high power levels the contribution to the overall distortion of the higher harmonics is so small

that the error in simulating these harmonics does not significantly affect the overall results. At

the 10 percent power rating, the smaller fundamental current results in an increase in the error of

the total distortion. Even with relatively high percent error of harmonics above the 1 7 th, the

waveforms are remarkably similar as evidences by Figure 4-11, Figure 4-13, and Figure 4-15.
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Figure 4-10 LBES 90% Harmonic Magnitude Comparison
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Figure 4-12 LBES 50% Harmonic Magnitude Comparison
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Figure 4-14 LBES 10% Harmonic Magnitude Comparison
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Figure 4-15 LBES 10% Motor Current
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Table 4-5 Tabulated LBES Simulation Results

90% Power 50% Power 10% Power
Measured Simulated Error % Measured Simulated Error % Measured Simulated Error %

1 1 1 1 1 1
0.2402 0.2456 2.25 0.2896 0.2965 2.38 0.5544 0.593 6.96
0.0707 0.0691 2.26 0.0293 0.029 1.02 0.2927 0.3116 6.46
0.0634 0.0649 2.37 0.077 0.0768 0.26 0.0648 0.0588 9.26
0.0451 0.0415 7.98 0.0354 0.0336 5.08 0.0777 0.0779 0.26
0.0268 0.0285 6.34 0.0421 0.0381 9.50 0.0181 0.0112 38.12
0.0248 0.0235 5.24 0.0282 0.0254 9.93 0.0337 0.0276 18.10
0.0098 0.0105 7.14 0.0266 0.0214 19.55 0.0026 0.0019 26.92
0.0114 0.0117 2.63 0.0221 0.0188 14.93 0.0155 0.0101 34.84
25.63% 26.02% 1.53 29.55% 29.97% 1.42 53.69% 56.10% 4.49

4.3 Harmonic Source Comparison

The final step of model validation consisted of analyzing a simple system shown in Figure

4-16 using the current source injection method as outlined in Chapter 3. This method is highly

accurate when only one harmonic source is present but leads to exaggerated distortion as more

non-linear loads are added. [6] The primary reason for this section was that the previous

validation sections did not include a distribution transformer or additional loading of the system.

The technique outlined in [21] and [6] is well established and establishes a means of comparing

results from the PSCAD simulation.

Figure 4-16 Current Source Comparison Circuit
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The system impedances of interest in the circuit above are the transformer, load, and generator

phase-to-neutral values. The harmonic currents generated by the six-pulse rectifier flow through

these impedances creating the voltage distortion on the main bus. Testing has shown a consistent

relationship between the negative sequence impedance of rotating machines and the harmonic

impedance. The negative sequence impedance is roughly equivalent to the subtransient reactance

and therefore is used in determining the equivalent harmonic impedance. [21] In the test system

above a subtransient reactance of 20% is used for the generator. The harmonic impedance of the

generator is given by:

Zgen = jXgen = jnXd

Equation 4-2

The transformer and load impedance is estimated in the phase-to-neutral equivalent circuit by

assuming a transformer impedance of 3%. The harmonic impedance of the transformer and load

on the primary side is:

Ztran = .2 V12) + in(0.03{jQI

Equation 4-3

where: V 1 is the primary voltage
V2 is the secondary voltage
VA is the volt-amp rating of the transformer
n is the harmonic number

The phase to neutral equivalent circuit of the test system is shown in Figure 4-17, the

calculations are carried out in the MATLAB script included in Appendix A.
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Figure 4-17 Phase-to-Neutral Equivalent Circuit
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The test system was simulated in PSCAD and the harmonic current and harmonic voltage

magnitudes were recorded. The recorded harmonic current magnitudes were then applied to the

phase-to-neutral equivalent circuit. The harmonic voltages up to the 2 5 th harmonic are shown in

Figure 4-18 for the PSCAD simulation and the phase-to-neutral equivalent circuit. It is clear that

the PSCAD simulation has accurately simulated the effects of a transformer and linear load.

Figure 4-18 PSCAD Current Source Comparison
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4.4 Model Validation Summary

The preceding sections demonstrate that this modeling technique accurately reflects

harmonic current and voltage distortion in power systems such as those found on Navy ships.

PSCAD simulations were compared to actual measurements taken on a system equipped with a

ship generator and propulsion motor drive (4.2). Simulations were also compared to established
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harmonic analysis techniques (4.1 and 4.3). In both cases highly accurate results were obtained.

In the next chapter a more detailed system will be developed that is more representative of an

actual shipboard power system. However, as there is no hardware developed for such a power

system, there are no measurements available at this time for validation purposes. All the

elements of this proposed power system are common with the previous studies that have been

compared to either actual measurements or proven analytical techniques in this chapter.

Therefore, we can be relatively confident in the simulation results of the proposed power system,

even without hardware validation.
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Chapter 5 Integrated Power System Development

The baseline IPS for this research is developed and analyzed in this chapter. This system is one

approach to an IPS for a future surface combatant and is not intended to be an optimized solution

for any particular ship design. The purpose of the system is to give a realistic picture of

harmonic distortion over the wide operating range of Navy ships.

5.1 Approach and Assumptions

The development of an IPS requires assumptions that define the characteristics of the

system. Changes in these assumptions may affect the results and conclusions of the study. The

entering assumptions for the development of this architecture include:

* 4160 V, three-phase main bus

"* Hybrid Distribution System (Some loads powered from a 450 V bus and some loads

fed from DC load centers connected to the 450 V bus)

"* Generator sets capable of 5-30 MW available for use. Commercially available prime

mover ratings are not considered herein.\

"* Generator subtransient reactance of 20 %

"* Circuit breakers capable of 5000 amps steady state and 63 kA fault current capacity

available. (i.e. Siemens 8BK40)

"* Induction motor drive capable of 30 MW based on scaling of LBES Motor

"* Ship Service Power requirements based on anticipated future surface combatant

requirements

* Propulsion Power requirements based on anticipated future surface combatant

requirements

5.2 System Description

The system developed for this study is shown in Figure 5-1. Simplification of the overall

* system was required due to the limitations of the PSCAD Educational version. This version of

the PSCAD software is limited to 220 electrical nodes. In order to meet this constraint, all ship

service loads were allocated to only two load centers, each with a 4160/450 V transformer. An

actual design would have multiple load centers distributed throughout the ship each with its own
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transformer. The radar and gun system power requirements were also combined into a single

load and to evaluate the worst-case harmonics were assumed to be fed from a six pulse rectifier.

Four generators, two 10 MW and two 30 MW, and two main motors (30 MW each) were

installed. Finally, loads were split evenly between two halves of the system.
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Figure 5-1 Baseline IPS
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5.2.1 Generator

The system generator is the most important component in determining harmonic

distortion characteristics of the system. The generator presents the lowest impedance at

harmonic frequencies. This impedance can be determined from the subtransient reactance (Xd")

of the generator. As discussed in Chapter 4, harmonic voltages are developed across the phase to

neutral system impedance due to harmonic currents generated by non-linear loads. In general for

a given harmonic current content, voltage distortion increases with Xd". This study assumed

Xd" of 20%. This is a typical value for generators of the size used in this study.[13]

A useful model for a synchronous machine is shown in Figure 5-2. This model

represents the effects of rotor currents on the direct and quadrature axis. These are the per unit

equivalent circuits for a synchronous machine with a single damper circuit on both the direct and

quadrature rotor axis. The model terminals are constrained by voltage, assumes sinusoidal

winding distribution, and employs the equal mutuals base system. There are the three phase

windings on the stator and the field, direct, and quadrature windings on the rotor. The direct and

quadrature windings are representations of current paths in the rotor. This machine model

follows the derivation in [25]. In order to analyze this model, the stator variables are shifted to

a reference frame attached to the rotor by the Park's transformation.

cos(9) cos(0 - -) cos(O + -)
3 3

T = 2 -sin(6) - sin( -- ) - sin(0 +-2)
3 3 3

1/2 1/2 1/2

Equation 5-1

Stator phase quantities are transformed into direct and quadrature quantities as follows:

Vdl ~Va1
Vq =T* vb

V0 Vc

Equation 5-2

Phase variables can be recovered from the direct and quadrature quantities using the inverse

transformation.

Currents are used as auxiliary variables as follows:
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Id- Xd Xad Xad V/IdI
ik LXd Xkd Xa. x fLd

i Xad Xad Xf J [K.f[iq =[X Xaql-
i kq x aq X kqJ

Equation 5-3

And the state equations become:

d -d =OoVd + CO q - O)oraid

dt

Equation 5-4

dtqdt - O°Vq +(cOY/q - Ooraiq

Equation 5-5

dt

Equation 5-6

d~4fkq = (JJorkqikq + O0 V f Euto -

Equation 5-7

dt 2H

Equation 5-8
dco _ o)TeTn

dt 2 
T

Equation 5-9

dt

Equation 5-10
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Figure 5-2 Synchronous Machine Transient Model
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The model described above provides accurate results in a wide variety of situations.

However, representations such as this are unnecessarily complicated for harmonic distortion

studies and slow simulations considerably.

Harmonic distortion is a steady state phenomenon and therefore does not require the

modeling of machine dynamics; however a modification of the typical steady state machine

model is required for this study. A synchronous machine steady state equivalent circuit is

normally represented as a voltage source behind a synchronous reactance where the synchronous

reactance represents the combined effect or the air gap and leakage components.
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Figure 5-3 Steady State Synchronous Machine Model
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This model would not be adequate for this study in that the synchronous reactance is not the

reactance seen by the harmonic currents. Instead, the generator was modeled as a voltage source

behind subtransient reactance (Xd") in order to accurately model harmonic distortion. The

voltage source allowed for control of voltage, phase angle, and frequency. In situations where

two generators were operating in parallel, one machine was set to automatically maintain bus

voltage while the voltage and phase angle of the other machine were adjusted to ensure proper

distribution of real and reactive power between the two machines.

The sizes of the generators were based on operational cost considerations. The prime

mover for the generator on a surface combatant is a gas turbine engine. Gas turbines operate

inefficiently when lightly loaded. For this reason generator sizing was chosen so that the system

could be operated as much as possible with the generators loaded at 50% power or above. The

power requirements for the future surface combatant are shown in Figure 5-4. A surface

combatant spends the vast majority of its time at sea under cruise loading at speeds of less than
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15 knots. The power requirements show a consumption of 10 MW with no propulsion power.

This increases to roughly 20 MW at 15 knots. The power requirements dictated installation of

two 10MW generators and two 30 MW generators operated in the following manner. For ship

speeds up to 15 knots the two 10 MW generators would be online in a ring bus configuration.

These generators would both be at 50% loading with no propulsion power required and increased

to full loading at 15 knots. For ship speeds from 15 knots to 25 knots one 30 MW generator

would be added to the ring bus. Finally, for speeds up to 30 knots the final 30 MW generator

would be brought online and the bus would be split. It should be noted that marinized gas

turbines in these power ranges at 4160 V are not in use by the US Navy. While this

configuration allows the online gas turbines to be operated in the most fuel efficient manner, the

costs associated with certifying gas turbine in these power ranges could negate these savings.

Splitting the electric bus for ship speeds above 25 knots is necessary due to circuit

breaker fault current limitations. In addition to determining the harmonic distortion Xd" also

determines the maximum fault current in the case of a short circuit as follows:[ 14]

ISC = VArated

1line Xd

Equation 5-11

In a 4160 V distribution system with Xd" of 20%, the breaker limitation of 63 kA requires

generating capacity on a single bus to be less than 73 MW.
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Figure 5-4 Future Surface Combatant Power Requirements
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5.2.2 450 V Distribution and CAPS/AGS

The 450 V distribution block was developed to model the 3 phase 450 V equipment such

as pumps, heaters, and other linear loads in addition to the DC load centers supplying sensitive

equipment such as communication gear, computers, and unique DC power requirements. This

architecture requires a transformer to reduce the main bus voltage to 450 V necessary to drive the

legacy loads. Table 5-1 shows the ship service power requirements for the future surface

combatant for various operating conditions. The total 450 V load was split evenly between the

two busses of the distribution system. The linear load was modeled as a parallel R, L three phase

load with a .8 power factor according to the following equations:

V 2  V 2

R = - and L=v
P 2 7fo Q

Equation 5-12
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To account for worst case conditions, the non-linear load contribution was modeled as a

six pulse rectifier and DC link driving a resistive load. The DC link for this component was

designed for maximum power factor and minimum line current harmonics according to [22].

The script used for calculations of the DC link is included in Appendix A.

The combined array power system (CAPS) and the advanced guns system (AGS) power

requirements were combined. The total power draw was split evenly between the two busses and

was again simulated as a six pulse rectifier with a DC link designed for maximum power factor

and minimum line current harmonics.

Table 5-1 Future Surface Combatant Ship Service Power Requirements

Battle Cruise J Anchor .
90 degree 10 Degree 90 Degree 10 Degree 90 Degree 10 Degree

CAPS/AGSKW 3500 4500 2800 3700 800 1300
450 V Linear(• 5300 7700 5100 6300 2300 3400
45OV Non Linear (K\A 1800 1800 1600 1600 700 7004.5 0 ,.V .,.,._o ~n ..L_-----( -. ....... -- -------- 0 0--- ............... ------ -.... ---_.0. -...... ------..... . 7 0 _ ,....._7 0

,Total (KW) 10600 14000 95001 11600 3800n 5400

5.2.3 Six Pulse Induction Motor Drive

The induction motor drive was modeled using the same parameters contained in 4.2.3.
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Chapter 6 Baseline Simulations and Mitigation Techniques

This system described in Chapter 5 was simulated for ship speeds of 0, 15, 25, and 30 knots

under each of the loading conditions listed in Table 5-1. The following parameters were

measured:

* 450 V bus

o Magnitude and phase of individual voltage harmonics

o THD

* Generators

o Magnitude and phase of individual current harmonics

o THD

The results were compared to the requirements of MIL-STD-1399, IEEE STD 45-1998

Recommended Practices for Installation of Electric Installations on Shipboard, and IEEE STD

519- 1992, Recommended Practices and Requirements for Harmonic Control in Electrical Power

Systems. MIL-STD-1399 and IEEE STD 45-1998 require THD for voltage not to exceed 5%

with individual harmonic distortion less than 3%. These requirements are the same as those

recommended in IEEE STD 519-1992 for general systems. Recommendations for dedicated

systems in IEEE STD 519-1992 allows for up to 10% voltage THD. The more stringent

requirements of MIL-STD 1399 and IEEE STD 45-1998 are based on protecting sensitive

equipment such as communications and weapons systems. In an IPS system, this sensitive

equipment is isolated form the distortion on the main bus by a rectifier and inverter. As long as

the front end rectifier is designed to operate off of a bus with higher distortion levels the

sensitive equipment should not be effected. In that motors and generators are normally rated with

a consideration of 10% harmonic content (NEMA MG-1), the higher distortion limits of IEEE

Std 519-1992 for dedicated systems should be adequate for the 450 V bus.

Setting a limit for current harmonics is more complicated than for the voltage harmonics.

MIL-STD-1399 places the responsibility on the user equipment and its effect on the system bus.

60 Hz equipment of 1 kVA or more "shall not cause single harmonic line currents to be

generated that are more than 3% of the unit's full rated load fundamental current". This

requirement will be difficult to meet without extensive filtering or unnecessarily increasing the

size and complexity of all electronic interfaces. Table 6-1 shows the IEEE STD 519 harmonic

current profile for a six pulse converter. Every harmonic up to the 19th violates the requirements
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of MIL-STD-1399. MIL-STD-1399 was written with segregated power systems in mind where

the relatively small generators (2.5 MW on a typical surface combatant) are more easily affected

by ship service loads. On an IPS ship, the only load that draws enough harmonic current to

significantly affect the bus voltage profile is the propulsion motor drive.

Table 6-1 IEEE STD 519 Harmonic Current Profile

Harmonic c.u. of Fundamental
1 1
5 0.192
7 0.132
11 0.073
13 0.057
17 0.035
19 0.027
23 0.02
25 0.016

The philosophy of IEEE STD 519-1992 is to limit harmonic injection from individual

consumers in order to prevent voltage distortion that violates the previously stated limits. It is

not realistic to apply the limits of IEEE STD 519-1992 to an IPS due to the differences in system

characteristics between the terrestrial grid and an IPS. The limits imposed by IEEE STD 519-

1992 are meant to control a wide number of customers all connected to the same power source.

In an IPS, the Navy directly controls all pieces of equipment attached to the main bus and can

more accurately predict the effect of each component on overall system performance. As long as

the overall voltage distortion remains in specification the system will function properly.

Another complication in trying to set current distortion limits in the same way as the

voltage distortion limits were set is that high current distortion does not necessarily result in high

voltage distortion. The motor drive (LBES 19 MW) with a six pulse rectifier front end will be

used to illustrate this point. Figure 6-1 and Figure 6-2 show the voltage and current on the AC

side of the pulse width modulated (PWM) motor drive (the voltage in Figure 6-1 has been scaled

to allow plotting on the same graph). At 10% power the current distortion is 67% and the

voltage distortion is 4.8%. At 90% power the current distortion is 26% and the voltage distortion

is 16.8%. The higher current distortion at 10% power does not lead to high voltage distortion

because the magnitude of the harmonic current is small due to the lower power demand. The

high current distortion at low powers is a characteristic of PWM motor drives. This
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characteristic is due to a large capacitor in the DC link. Current only flows when the output of

the rectifier is higher than that of the capacitor. At light loads, the ac side current is

discontinuous and only becomes continuous as load on the DC link increases.

For the reasons listed above it makes sense to establish current distortion limits based on

the ratings of the generators. The fifth and seventh harmonic current limits for the generator

installed at LBES are 9% and 8% of the fundamental limit. [23] NEMA MG-I allows for 10%

voltage distortion in the ratings of machines suggesting that higher current distortion levels are

acceptable. For the purpose of this study the LBES generator limits will be used as a benchmark

for acceptable levels of current distortion. Table 6-2 shows the current limits for the generators

used in this study.

Table 6-2 Generator Current Ratings

10 MW Generator 30 MW Generator

Fundamental Current Limit 1734 A 5204 A

5 th Harmonic Current Limit 156 A 468 A

7th Harmonic Current Limit 138 A 416 A
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Figure 6-1 Voltage and Current 10% Power
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Figure 6-2 Voltage and Current 90% Power
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6.1.1 THD on the 450 V bus

The most important simulation results concern the voltage distortion on the 450 V bus.

Figure 6-3 shows THD on the 450 V bus for each of the simulation cases. The baseline six pulse

system violates MIL-STD 1399 and the guidelines of IEEE 519-1992 for dedicated systems for

all loading conditions and ship speeds simulated when the propulsion motors are operating. The
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voltage distortion meets both criteria without the propulsion engines operating (the 0 knot series

of Figure 6-3). Typically, you would expect that as propulsion power increases so would voltage

distortion due to the increased magnitude of the harmonic currents. In these simulations this is

the case but only within the discrete generator operating configurations. For example, at 15

knots both 10 MW generators are operating at full power. If an 18 knot ship speed is desired, the

30 MW generator must be brought onto the bus in order to supply this additional power. The

addition of the 30 MW generator reduces the phase to neutral system harmonic impedance and

possibly reduces the overall system voltage distortion despite the additional harmonic current

from the power increase

In the baseline IPS simulation the highest distortion occurs at 25 knots. However, the

distortion level is only slightly higher than the 15 and 30 knot conditions. The 15, 25, and 30

knot speeds correspond to the maximum propulsion power for a given generator configuration

and therefore the highest. voltage distortion in each configuration. Even though propulsion power

(and harmonic current magnitude) more than doubles between the 15 and 25 knot conditions,

and again between the 25 and 30 knot conditions, THD(voltage) remains relatively constant due

to the decrease in system harmonic impedance from the additional power generation capability

brought online to meet the propulsion demand.

Figure 6-3 also illustrates that the distortion level of the power system is not significantly

influenced by changes in loads other than the propulsion motor. The cruise loading condition on

a 90 degree day is the condition with the least amount of non propulsion load and results in the

worst case distortion for the system but only by a marginal amount. This is particularly true at

the highest propulsion motor powers. Table 5-1 shows that there is almost a 5 MW difference in

ship service loading between the 90 degree cruise condition and the 10 degree battle condition.

At full propulsion power this additional load reduces total distortion by only 0.3 %. At 15 knots,

where the total propulsion power (6 MW) is less than ship service loads, the reduction in

distortion is 2%.
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Figure 6-3 THD 450 V Baseline System
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The 90 degree, cruise loading condition was chosen to conduct a more detailed look at

THD over the entire propulsion motor loading range. As mentioned in the preceding paragraph,

this was the loading condition the rasitin twen the stdistortion levels. It can be assumed
that the other loading conditions would exhibit a similar response over the operating range but at

slightly lower distortion levels. Figure 6-4 shows the voltage distortion from 0 knots to 30

knots. The three curves represent the discrete electric plant configurations. The three
configurations are:

"• Two 10 MW generators in parallel on a ring bus (0-15 knots)

"• Two 10 MW and one 30 MW generators in parallel on a ring bus (15-25 knots)

"• Split plant with a 10 MW and 30 MW generator on each side (25-30 knots)

The drop in distortion levels at the transitions between the configurations is evident. The lower

generator impedance results in lower distortion levels. The figure also shows that the voltage
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distortion levels meet IEEE Std 519-1992 at speeds less than 13 knots. This is significant in that

navy ships spend 90% of their time at sea at speeds less than 13 knots.

Figure 6-4 THD vs Speed, Cruise Loading, 90 degree day
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The individual harmonic components for each speed and loading case are shown in

Figure 6-5 through Figure 6-8. The figures show that the fifth and seventh harmonics are the

major contributors to the voltage distortion. These harmonics violate MIL-STD- 1399 in every

simulation except for the 0 knot simulation. Tabulated results of the baseline simulations are

included in Appendix C.
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Figure 6-5 Individual Harmonic Voltages, Cruise Loading, 90 degrees
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Figure 6-6 Individual Harmonic Voltages, Cruise Loading, 10 Degrees

025knots

030 knots

"4~

2"-

0-

5 7 11 13 17 19 23 25

Harmonic Number

60

: i i i U.



Figure 6-7 Individual Harmonic Voltages, Battle Loading, 10 degrees
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Figure 6-8 Individual Harmonic Voltages, Battle Loading, 10 degrees

12

10--

:EQ0 knots
iSknt s
1, knots

5 7 11 13 17 19 23 ' 25
Harmonic Number

61



6.1.2 Generator Current Distortion

The individual harmonic current magnitudes for the 90 degree day cruise loading

conditions are shown for each generator in Figure 6-9 and Figure 6-10. As with the voltage

distortion, the ship service loading had little effect on the overall results for current distortion.

The results for the other loading conditions were similar. Tabulated results of all baseline

simulations are included in Appendix C. The fifth harmonic current limit for the 10 MW

generator and the 30 MW generator is 156 A and 468 A respectively. The seventh harmonic

current limits are 138 A and 416 A. The baseline system violates the fifth harmonic limit for

both the 10 MW generator and the 30 MW generator at the 25 and 30 knot speeds. The seventh

harmonic is within the limit for all cases.

Figure 6-9 Harmonic Current Magnitude (RMS) 10 MW Generator
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Figure 6-10 Harmonic Current Magnitude (RMS) 30 MW Generator
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6.1.3 Baseline Simulation Conclusions

The baseline IPS with a six pulse motor drive results in unacceptable voltage distortion

and current distortion levels which could cause overheating of rotating machinery such as the

main generators and various shipboard loads. While the voltage distortion levels are high for

speeds above 13 knots, the system operates within the guidelines of IEEE Std 519-1992 for

sp eeds less than 13 knots. The generator current data suggests that the majority of the distortion

is caused by the fifth and seventh harmonic. Figure 6-11 shows the 30 MW generator current

for the 10 degree day loading condition and the ship at 25 knots. This waveform was generated

in a MATLAB script (Appendix A) from the magnitude and phases of the individual harmonic

components. In Figure 6-12 the generator current waveform was generated with the fifth and

seventh harmonic removed. The improvement in THD suggests that if the fifth and seventh

harmonics were attenuated a design which meets the established criteria for voltage and current

could be achieved. In the following section methods of removing these harmonics will be

investigated.
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Figure 6-11 Generator Current, 10 deg day, 25 knots
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Figure 6-12 Generator Current, 10 deg day, 25 knots, 5th and 7th Harmonics Removed
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6.2 Harmonic Distortion Mitigation Techniques

The results of Chapter 6 clearly indicate that in order to implement an IPS with this

configuration the harmonic current magnitudes at the fifth and seventh harmonics must be

reduced. There are three methods employed in industrial and commercial power systems to

reduce the flow of harmonic currents. These are: [24]

"* Use of shunt filters

"* Use of multipulse power converters

"* Harmonic current injection

In this section the first two methods of attenuation listed above will be simulated in order

to obtain system results. In addition to these two methods a modification to the operation of the

propulsion motor drive will also be simulated.

6.2.1 Line Commutated Rectifier Motor Drive

Section 4.2.3 describes the operation of the propulsion motor drive used in the simulation.

As mentioned earlier, this is a phase controlled converter whose firing angle is controlled as

shown in Figure 6-13. The firing angle of the converter is controlled to maintain stability on the

DC link between the rectifier stage and inverter stage of the motor drive circuit. One

consequence of controlling DC link voltage in this manner is that it degrades the power factor of

the motor drive. The relationship between power factor and THD is established in Equation 2-11

through Equation 2-14. In general, the power factor of the converter decreases with increasing

alpha. [9]
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Figure 6-13 Propulsion Motor Firing Angle
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The system was simulated with the motor drive rectifier operating as a line commutated

rectifier by setting the firing angle of the bridge thyristors to zero degrees. Operating the

rectifier in this manner will result in lower harmonic distortion. The 90 degree day cruise

loading condition was used in the model and propulsion loads up to 30 knots were simulated.

The results are shown in Figure 6-14. As expected, operating the front end rectifier as a line

commutated converter significantly reduces the voltage distortion of the system. The limits of

IEEE Std 519-1992 are only exceeded at the highest propulsion loads for the last two electric

plant configurations. Figure 6-15 shows the individual harmonic contribution for the line

commutated and the phase controlled propulsion motor drive of the baseline system simulated

with 90 degree day cruise loading at 30 knots. A marked reduction in the fifth and seventh

harmonic is noticed.
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Figure 6-14 Six Pulse Line Commutated Propulsion Converter
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Figure 6-15 THD Comparison, Line Commutated vs Phase Controlled Motor Drive
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The fifth harmonic current for the baseline system was above the limit for both the IOMW

and the 30MW generator in the baseline system at 25 and 30 knots. Figure shows the individual
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harmonic current magnitudes at 25 and 30 knots for the baseline and the line commutated

system. The fifth harmonic is now less than the limit for both generators. (156 A -10MW, 468 A

-30 MW) Tabulated results of the simulations are contained in Appendix C Table 8-7.

Figure 6-16 Individual Harmonic Current (10 MW Generator)
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Figure 6-17 Individual Harmonic Current (30 MW Generator)
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6.2.2 Multipulse Motor Drive and Harmonic Filter Systems

The two methods most commonly used to reduce harmonics on power systems are the

addition of shunt harmonic filters and/or the use of a multipulse converter. The baseline system

described in 5.2 was modified to incorporate these two methods of harmonic mitigation. Each

method was implemented separately.

The fifth harmonic filter described in 4.2.2 was used as the basis of the filter designed for

this simulation. The resonant frequency of the filter is given by:
1

Equation 6-1

Where f. is the resonant frequency
L is the inductance of the filter
C is the capacitance of the filter

IEEE Std 141-1993 recommends the following steps in the design of a filter for harmonic

mitigation.

"* Selection of a capacitor value based on power factor improvement

"* Design an inductor to series tune the capacitor to the desired harmonic

"* Calculate peak voltage and current in order to select components

This method is not suitable for an IPS due to the wide range of reactive load experienced by the

power system. The capacitor selection step presumes that the amount of MVar is known and

relatively steady. In the baseline system of 5.2 the system MVar increases for 7 to 38 when

propulsion power increases from 0 to 100%. Designing a filter for the 38 MVar at full power

would be far too large for normal operations and would be larger than needed to reduce

distortion within limits. Due to space consideration on ships, the ideal filter is the smallest filter

that reduces distortion limits to within specifications.

The capacitor in the filter injects reactive power according to the following equation:

kV 2

M var,=-V
XC

Equation 6-2

The LBES uses a 282uF capacitor rated at 2900V for the fifth harmonic filter. Equation 6-2 tells

us that this filter will inject 1.83 MVar. The inductor necessary to tune the filter to the fifth
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harmonic is lmH according to equation 5-3. This filter was added to the input to the propulsion

motor drive of the baseline system in order to reduce the fifth harmonic.

The 12 pulse motor drive was derived from the LBES motor drive of 4.2.3. Two six pulse

rectifiers can be combined to produce twelve pulse operation if the ac input signal to one rectifier

is phase shifted by 300. The phase shift is accomplished by use of transformer connections and

shown Figure 6-18. One transformer is connected wye-wye while the other is connected delta-

wye. The delta-wye connection produces the necessary phase shift and the combination of the

two transformers produce six phases necessary for 12 pulse operation. The currents of interest

are shown in Figure 6-19. The current Iwye is the normal six pulse input current. The current

Idelta contains no triple-n harmonics due to the delta connection of the transformer. The line

current Iline is the sum of Iwye and Idelta and results in a waveform where the fifth and seventh

harmonics are cancelled. The first non-zero harmonic present in the line current is the 11 th.

Figure 6-18 12 Pulse Converter
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Figure 6-19 12 Pulse Line Current
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Simulations for the 15, 25, and 30 knot speeds with the 90 degree day cruise loading

condition were performed for the baseline system with the harmonic filter addition and the

baseline system with a 12 pulse motor drive. Both of the alterations reduced voltage distortion

levels to within the limits of IEEE Std 519-1992. Figure 6-20 shows a comparison of the

distortion levels for the baseline system compared to the filter system and the 12 pulse motor

drive system. Figure 6-21 and Figure 6-22 show the THD for the filter system and 12 pulse

system over the operating range of the ship. Tabulated results are contained in Appendix C,

Table 8-8 and Table 8-9.
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Figure 6-20 THD Comparison

SUBaseline System

E312 Pulse System

15 25 30
Speed (knots)

Figure 6-21 Filter System THD

-4RIg Bus 2X10MW
URing Bus 2XIOMW + 1X30MW

ooo- -Spft Plent 2510MW + 2X30MW
Limit

10 11 12 12 14 15 15' 17 15 19 20 21 22 23 24 25 26 27 28 25 30
Speed (knots)

72



Figure 6-22 THD 12 Pulse System
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The individual harmonic voltages are plotted as a percent of the fundamental in Figure 6-23

and Figure 6-24 the 12 pulse and the filter system respectively. The fifth and seventh harmonics

have almost been eliminated in the 12 pulse system as expected. They are still present due to the

fact that the DC load centers and AGS/CAPS system still draw fifth and seventh harmonic. In

the filter system, the fifth harmonic is the only harmonic which has been significantly reduced

due to the design of filter. However, as mentioned above this attenuation is enough to bring the

system to within the limits of IEEE Std 519-1992 for dedicated systems.
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Figure 6-23 Individual Distortion 12 Pulse System

7 57

6-

€4

Harmonic Number

Figure 6-24 Individual Distortion, Filter System
El nots

5.

"3-

0 I

5 7 11 13 17 19 23 25

Harmonic Number

74



6.3 Overall Conclusions

The baseline system simulations showed that the distortion levels on an IPS system are

most affected by the propulsion motors. Simulations over all loading cases were conducted and

included large variations in ship service loads (Table 5-1). These variations produced very small

changes in voltage distortion, especially at high powers (Figure 6-3). The baseline simulations

also showed that distortion in excess of IEEE Std 519-1992 is present on this system. A six

pulse propulsion motor drive similar to the motor tested at the LBES requires some form of

harmonic mitigation to reduce distortion levels.

Three harmonic mitigation techniques were employed. The first method was to change the

motor drive rectifier from a phase controlled rectifier to a line commutated rectifier. The second

method was though the addition of a fifth harmonic filter, and the third method was changing the

motor drive rectifier to a 12 pulse rectifier. Figure 6-25 summarizes the distortion results of all

three methods.

Figure 6-25 Summary of Distortion Results
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All three methods significantly reduce distortion. The line commutated rectifier

simulations show that while IEEE Std 519-1992 is exceeded between 24 and 25 knots and again

between 29-30 knots the margin is so small that this system should still be considered for

implementation. Operational procedures could address the distortion levels between 24 and 25

knots. For instance, procedures could dictate shifting to split plant earlier in order to reduce

system impedance and also distortion. The distortion at top speed may not even be an issue due

to the limited amount of time a ship spends at flank speed. Component failure due to high

distortion levels is not an immediate event, degradation takes place over time. Terrestrial

distortion limits already allow for short periods of distortion in excess of the limits. This system

would have the least impact on the ship as it does not require installation of a filter or a

transformer. Additionally, the motor drive would be less complicated due to the fact that

thryristor firing angle control would no longer be necessary. For these reasons the line

commutated rectifier systems should be further investigated. The filter system and the 12 pulse

system both reduced distortion levels to less than IEEE 519-1992 and also reduced the fifth and

seventh harmonics to less than the generator limits. Either of these systems could be

implemented, however, the 12 pulse system includes a significant size and weight penalty. The

two systems differ only in that the 12 pulse system would require two phase shifting

transformers for each of the motor drive while the filter system would require installation of a

single three phase filter at the input to each motor drive. The total component weights are shown

in Table 4-1. These weights were determined based on transformer power densities obtained

from [14], and the size and weight of the fifth harmonic filter at LBES. Based on the size and

weight of the two systems the filter system would be preferable to the 12 pulse system.

Table 6-3 Size and Weight of Harmonic Filter and Propulsion Transformers

Harmonic Filters Propulsion Transformers

Area (M 2) 19.3 94.9

Volume (m3) 41.3 213.8

Weight (mton) 8.3 172.4
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Chapter 7 Subtransient Reactance

To this point in this research a subtransient reactance of 20% has been assumed. This a typical

value for generators of this size but variations do exist. ABB Marine and Turbo charging quotes

generator subtransient reactance as low as 10% in their project guide for Azipod propulsion

units. As discussed earlier, the subtransient reactance of the generator is the dominant

impedance seen by harmonic currents in the system. Higher subtransient reactance will lead to

higher voltage distortion for a given harmonic current environment. Subtransient reactance also

determines the maximum initial generator current when the generator is subjected to a three

phase fault. Increasing subtransient reactance lowers initial fault current levels but also increases

voltage distortion. Understanding the nature of this tradeoff as it pertains to the IPS described so

far is the purpose of this chapter.

7.1 Fault Current

The current sourced by a generator subjected to a sudden three phase short circuit can be

described over three time periods; subtransient, transient, and steady state. The magnitude of the

current sourced by the generator is a damped sinusoidal whose initial amplitude is limited by the

subtransient reactance during the first few cycles after the short circuit. During the transient and

steady state time periods the amplitude is limited by the transient reactance and synchronous

reactance of the machine. The transient reactance of the generator is associated with the field

winding on the rotor and the subtransient reactance is associated with additional current paths on

the rotor of the machine. The damping of the response is associated with the resistance of these

current paths. For a given generator this current can be predicted by solving Equation 7-1.

Figure 8 shows the response of a generator with 25% and 15% subtransient reactance to a sudden

three phase fault. The lower subtransient reactance results in significantly higher initial current.
1 l(

{I+t.1 1 $ e cos(OX)
X d X d Xd Xd X

Equation 7-1

Where:
Ta = armature time constant
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Td' = transient time constant
Td" = subtransient time constant
Xd = synchronous d axis reactance
Xd' = transient d axis reactance
Xd" = subtransient d axis reactance

Figure 7-1 Generator Fault Current
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When choosing a low or medium voltage system for a ship IPS, the current handling capabilities

of available circuit breakers can easily be exceeded. Without going through a product

development for a specialized breaker or employing fault current limiters, the ratings of the

circuit breaker with the highest current handling capabilities are 5000 amps steady state and

63kA fault. These ratings limit the power handling capability of the electrical bus as follows.

Equation 5-11, repeated below, determines the fault current for a given bus voltage, generator

subtransient reactance, and power capability. Figure 7-2 shows the fault current expected for

subtransient reactances of 15%, 20%, and 25%. At 15%, the 63kA breaker rating is exceeded at

approximately 55 MW, limiting the power handling capability of the electrical bus.
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Figure 7-2 Generator Fault Current vs. Installed Power
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7.2 Voltage Distortion

A higher value of subtransient reactance is desirable to support higher power demands on an

electrical bus but this leads to increased voltage distortion. In order to gain an understanding of

the effect of subtransient reactance on voltage distortion the circuit in Figure 7-3 was

constructed. The circuit consists of a single 20MW generator supplying the propulsion motor

drive of section 4.2.3. Generator subtransient reactance was varied from 15%-25% and the

propulsion motor drive was simulated at powers from 2MW to 20MW. Voltage and current

distortion were measured and results are plotted in Figure 7-4, Figure 7-5, and Figure 7-6. The

data shows that voltage distortion is significantly effected by the subtransient reactance value.

Figure 7-6 shows that at low motor power, where the harmonic current magnitudes are small, the

difference in the resulting voltage distortion is relatively small. However, as the drive power
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increases, the effect of the subtransient reactance on voltage distortion is clearly evident,

resulting in increases of distortion levels on the order of 15%. The effect of the DC link voltage

control is also clearly evident in this simulation. We see the voltage distortion decrease

significantly as the thyristor firing angle is decreased at the higher power levels.

Figure 7-3 Subtransient Reactance Simulation Circuit

<111
0<

oto

Drive

80



Figure 7-4 Voltage Distortion
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Figure 7-6 Voltage Distortion vs Motor Drive Power
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7.3 Impact on the Baseline System

When the baseline system was developed a subtransient reactance of 20% was chosen because

this was a typical value for marine generators. This selection resulted in the requirement of

splitting the main bus in order to supply the full 80MW of power. A more practical approach

when designing an IPS would be to set a minimum subtransient reactance for the generators

based on the power of each bus. In the case of the baseline system if we limited subtransient

reactance to no less than 22% we would be able to provide the entire 80MW of power from a

single bus. The 12 pulse system simulations for the 90 degree cruise loading were repeated with

the 22% subtransient reactance and plotted over the results from the earlier simulations. The

increase in subtransient reactance results in an increase in THD on the order of 1-2 %. The slight

increase in distortion is more than offset by the operational flexibility gained with the higher

subtransient reactance. Figure 7-7 shows the results. Conversely, you could limit the power on
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each bus in order to accommodate a lower subtransient reactance. Limiting power to 40 MW on

each bus and operating with a subtransient reactance of 15% could allow operation without a

harmonic filter or a 12 pulse system. The worst case distortion for the baseline system (six pulse

motor drive without harmonic filter) drops to 10% if subtransient reactance is lowered to 15%.

Figure 7-7 THD % with 22% Subtransient Reactance
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Chapter 8 Conclusions

Commitment to powering future Navy ships with IPS requires an understanding of the effect

on system power quality of the components of the system. In this research an attempt was made

to quantify the distortion characteristics of an IPS that might be used on naval surface

combatants. The power requirements of the future surface combatant were simulated in order to

present a realistic picture of propulsion and ship service demand and components tested at LBES

were simulated in order to validate the modeling techniques used in this research. The results of

the analysis illustrate some of the tradeoffs necessary in formulating an IPS for a navy ship.

Additionally, these results also show some of the system characteristics necessary to provide

adequate power quality in an IPS.

The first conclusion of this research is based on the premise that power requirements for the

navy ships of the future will continue to grow. With this premise in mind, system voltage of

4160 is too low to service the power needs of future navy ships using electric propulsion. The

primary benefit of the 4160 V system is that step-down transformers are not required at the

interface of the rectifier and system bus. While this presents a significant savings in size and

weight, future high energy weapons will demand power beyond the capabilities of a 4160 V

system. Chapter 7 showed the relationship between subtransient reactance and fault current. It

would be necessary to increase the subtransient reactance of installed generators in order to

provide additional power but this increase would also have a negative impact on the system

power quality. Chapter 6 showed that THD was within the limits of IEEE Std 519-1992 for the

80 MW system, however, increasing the power capability of the system would also increase the

harmonic current level. The increase in harmonic currents coupled with the higher subtransient

reactance would raise THD above the 10% limit. At 80 MW, a 4160 V system is already at the

limits of its power handling capabilities. Selecting this voltage level would limit the prospects

for incorporation of the high energy weapons expected in the future.

The first advantage of an IPS arrangement, listed in Chapter 1, was "increased fuel economy

due to the efficient operation of the prime mover". This true in that with an IPS the ship is no

longer using a large gas turbine (operating at a fraction of its rating when the ship is at less than

flank speed) for propulsion and additional gas turbines to supply ship service power
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requirements. In theory, with an IPS, fuel efficiency savings will garnered by using the same

prime mover to supply propulsion as well as electrical power requirement. In the baseline

system of Chapter 6 the generator sizes of 10 MW and 30 MW were selected in order to

efficiently operate the prime movers. The selection was based on the following:

* A minimum of two generator sets will be operating in order to have a redundancy

* Gas turbines operate inefficiently a light loads, below 50%

These statements resulted in the generator selection above and an operational philosophy where

the two 10 MW generators would be normally operated and ship speeds below 15 knots. When

higher speeds were necessary the 30 MW generators would be brought online. Since navy ships

spend the majority of their time at speeds below 15 knots, the system would normally operate

with its smaller prime movers online and each loaded at 50% rated power or above. However, if

we examine the available turbine/generator sets we find that much of this efficiency is lost due to

a lack of sets in the desired power range. Table 8-1 shows the turbine/generator sets are available

for use in an IPS. The limited selection would result in an 80 MW system with either four

LM2500 propulsion generators or three LM 2500+ generators and a single DDA 501-K34G.

Both cases result in excess generation capacity at speeds less than 15 knots, which would affect

the efficiency of operation over the lifetime of the ship. At a system voltage of 13.8 kV the loss

of efficiency is even greater. An 80 MW IPS would require the installation of two RR MT-30

and two GE LM500. The two smaller generators are unable to supply even the non-propulsion

loads, so in order to supply redundancy, both of the large generators would be required to be

operating at all times. The small generators would only be placed online in order to reach flank

speed. This configuration is the opposite of what is desired for efficient operation of the prime

movers. A turbine/generator set with a power rating on the order of 10 MW is required to fully

capture the efficiency inherent in an IPS.

Table 8-1 Turbine/Generator Sets

[Engine JVoltage(kV) JPower(MW)
GE LM2500 4.16 21
GE LM2500 + 4.16 26
DDA 501-K34G 4.16 3

[RR MT-30 13.8 36.25
GE LM500 13.8 3.8
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The last conclusion of this research is that harmonic mitigation techniques exist that

would allow the supply of non-sensitive AC loads from transformers connected directly to the

main bus of an IPS with electric propulsion. It was shown that if a motor drive power supply

could be constructed that did not rely on thyristor firing angle control to maintain DC-link

stability, the IPS may well be operated without installation of a harmonic filter. Even with the

extra distortion associated with controlling the thyristor firing angle it was shown that the

distortion levels were reduced sufficiently with either the installation of a harmonic filter or

using a 12 pulse motor drive.

If the first and last conclusions are taken together it is found that an IPS for a future navy

ship would have a 13.8 kV bus with a 12 pulse motor drive. The higher bus voltage would allow

for power growth beyond 80 MW. This bus voltage would also necessitate step-down

transformers for each of the motor drives. As the transformers were needed for the interface

there would be no reason not to select a 12 pulse drive to limit harmonic currents.

8.1 Future Work
Numerous opportunities exist to expand the current IPS model presented in this research.

This model was developed specifically to measure harmonic distortion on the 450 V bus of the

baseline IPS. Due to the 200 node limitation of the software used to conduct the simulations and

the specific nature of the research, simplifications were made.

A simple model was used for the generators and prime movers to speed up the

simulations and limit the node numbers. Detailed models of the generators could be developed

based on the actual characteristics of the governor, regulator, prime mover, and generator in

order expand capabilities of the model to include transient behavior and fault analysis while still

retaining the capabilities for analyzing power quality. While the capability to conduct this

analysis already exists, a library of these power sources and their associated control systems

would allow for rapid reconfiguration of many IPS architectures to include a variety of power

sources.

Future weapons systems such as the rail gun will have peak energy demands over very

short intervals of time. These future loads are classified as pulsed loads and could have a

significant impact on an IPS. The nature of these loads requires an auxiliary power source, such

as a capacitor bank, to inject the necessary energy in a short amount of time. A model of these
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power sources coupled with a simple pulsed load model could be developed to determine the

impact on the system.

This research assumed that the sensitive loads were supplied by an inverter. It was

assumed that the power quality on this section of the bus would adequate for these sensitive

loads. However, the nature of these sensitive loads negatively impacts power quality. The

majority of these loads are electronic loads with a front end rectifier. Research has been

conducted into the effect of large numbers of electronic loads supplied from a single source.

[14][ 15][26] This research has focused on the cumulative harmonic currents of these loads and

their interaction due to a shared source impedance. Future naval ships will have an increasing

number of these loads due to programs such as the Total Ship Computing Environment on DDX

and the impact of their cumulative harmonic currents. An analysis into the operation and

stability of an inverter supplying loads that generate significant harmonic currents could be

conducted.
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Appendix A. Matlab Scripts

% Edward West
% Thesis
"% Signal Construction From Fourier Coefficients
"% 10/04/2005

"% This script is used to compare measured data and simulated data.
"% The fourier coefficients of the two signals are entered in Imag,
"% Iphase,Imagl, and Iphase 1 in addition to the number of coefficients in
" n and n 1. The two signals are shifted so that their fundemental components
"% begin at zero degrees.

clear

f=60;
om=2*pi*f;
t=0:5e-5:5e-2;

% harmonics of interest from data
n=[1 57 11 13 17 1923 25];
% harmonics of interest from simulation
nl=[1 57 11 13 17 1923252931];

%set up the fourier coefficients and phases
Imag=[2460 591 174 156 111 66 61 24 28 ]/2460;
Iphase=[-25 59 -152 -78 56 137 -89 -13 120].*(pi/180);
Imagl=[2557 628 169 166 106 73 60 30 30 10.7 10.8]/2557;
Iphasel1=[-2.27 -1.8 -2.89 -2.6 2.4 2.8.06.03.03.51 -.60];

% shift the signal so that fundemental is at zero degrees
for k= 1:length(n)

Iphasecor(k)=Iphase(k)-Iphase(1)*n(k);
end

% compute time domain signal
for i= 1 :length(n)

I(i,:)=Imag(i).*cos(n(i).*om.*t+Iphasecor(i));

end

%repeat Process for simulated signal

Iplot=sum(I);
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for k=l I:length(nlI)
Iphasecor1 (k)=Iphase1I(k)-Iphase1 (1)*n1I(k);

end

for i=1 :length(nl)
Ii (i, :)=Imagl1(i).*cos(n 1(i). *om. *t+Iphasecorl (i));

end

THDs=sqrt(sum(Imag 1(2 :length(nl1)).A2)/Imagl 1(1)A2)* 100
THDm=sqrt(sum(Imag(2 :length(n)).A2)/Imag( 1 )A 2)* 100

Iplotl=sum(I1);
figure(1)
hold on

plot(t,Iplot);

h=legend('measured','simulated')
title(['THDsimulated = ',num2str(THDs),'% THDmeasured=',num2str(THDm),'%'iI);
hold off
figure(2)

Thar--[Imag;Imag 1 (1 :ength(n))];
bar(n,Thar');
xlabel('harmonic number')
ylabel('magnitude')
h=legend('measured','simulated')
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"% Edward West
"% Thesis
"% Harmonic Current Source Comparison

"% This script determines the voltage distortion caused
"% by a six pulse rectifier in the test system shown in
"% figure 20.

clear
% harmonics of interest
n=[5 7 11 13 17 19 23 25];
% frequency
w=377;
%Transformer Voltages
vi=4160;
v2=.450;
% Per unit reactances
xpctn=3;
xpcgen=20;
%calculation of transformer harmonic reactance
xtn=n.*(xpctn*vlA2/(100*1000*1000));
rtn=.2*(vl/v2)A2;
ztran=rtn+j *xtn;
% calculation of generator harmonic reactance
xgen=.00024482;
zgen=j.*xgen.*w.*n;
% Current drawn by the six pulse rectifier
Imag=[.2553.1024.0743.0517.0339.0296.0193.0194];
%IEEE values of harmonic currents per unit for a six pulse recitier
Iee=[. 192.132.073.057.035.027.020.016];
%total system impedance
ztot=abs(zgen.*ztran./(zgen+ztran));
%predicted voltage harmonics using actual currents drawn
V=Imag.*ztot
% predicted voltage harmonics using IEEE estimates
V2=1.0567.*Iee.*ztot

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%T%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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"% Edward West
"% Thesis
"% Calculation of short circuit current
"% given per unit subtransient reactance
"% bus voltage and total power available

clear
limit=[63000 63000 63000 63000 63000];
Vb=input('Enter line to line system voltage ');
xdpp=[.2];
Pb=[40 50 60 70 80];
hold on
for i= 1 :length(xdpp);

I=Pb./(.8*sqrt(3)*Vb*xdpp(i));
plot(Pb,I* 1000)

end
plot(Pb,limit/1000)
xlabel('Installed Power (MW)')
ylabel('Fault Current (kA)')
hold off

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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"% Edward West
"% Thesis
"% Calculation of O/P filter inductance
"% based on method outlined in
"% Keller A W, Yadusky W F, "Rectifier Design for
"% Minimum Line Current Harmonics and Maximum Power
"% Factor" IEEE Transactions on Power Electronics, Vol
"% 7. No 2 April 1992

clear

% Normalization References
Vref=input('Enter nominal rms line to neutral source voltage ');
Pref=input('Enter nominal rectifier o/p power ');
Fref=60;
Tref=2*pi/Fref;
Iref=Pref/Vref;
Zref=VrefA2/Pref;

% Inductance Calculation

Lon=. 1;
Con=10;
Lo=Lon*(Vref/(Iref*Fref))
Co=Con*(Iref/(Vref*Fref))
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"% Edward West
"% Thesis
"% Calculation of Generator Fault Current

xd=2.2;
xq=2;
xdp=.45;
xdpp=.25;
xqpp=.22;
tdop=5;
tdopp=.2;
tqopp=.3;
t=O:.OOOO1 :.25;

tdp=xdp*tdop/xd;
tdpp=xdpp*tdopp/xdp;

ial =( 1/xd+( 1/Xdp- l/Xd). *exp(-t./tdp)+( l/xdpp- 1/Xdp). *ex p(-t./tdpp)). *cos(377*t)..
-1 ./xdpp*exp(-t./ta);

hold

%title('Generator Fault Current')
ylabel('Phase Current (pu)')
xdpp=. 15;
tdp=xdp*tdop/xd;
tdpp=xdpp*tdopp/xdp;
ial =( 1/xd+( 1/xdp- 1/xd). *exp(-t./tdp)+( 1/Xdpp- 1/xdp). *exp(-t./tdpp)). *cos(377*t)...

-1 ./xdpp*exp(-t./ta);

plot(t,-ia 1)
h=legend('25% subtransient reactance',' 15% subtransient reactance')
"% title('15% Subtransient Reactance')
"% ylabel('Phase Current (pu)')
xlabel('time (sec)')
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Appendix B. LBES Comparison for Generator, Filter, and Voltage
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Appendix C. Tabulated Distortion Results

Table 8-2 Cruise Loading, 90 Degrees, Baseline System

Condition Cruise
Temp -90
Speed 0

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund
1 436.56 100 753.28 100
5 5.99 1.37209089 22.97 3.049331
7 1.94 0.44438336 9.37 1.243893

11 9.73 2.22878871 15.23 2.021825
13 6.23 1.42706615 8.87 1.177517
17 4.31 0.98726406 3.75 0.497823.
19 4.01 0.91854499 3.22 0.427464
23 0.14 0.0320689 0.64 0.0849621
25 0.57 0.13056625 0.4 0.053101

THD 3.30 4.09 1

Condition Cruise
Temp 90
Speed 15

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund

1 426.96 100 1376.27 100

51 41.18 9.64493161 151.45 11.00438

7 7.53 1.76363125 20.28 1.473548

11 29.45 6.89760165 52.64 3.824831

13 12.44 2.91362188 19.55 1.420506

17 15.42 3.61157954 19.79 1.437945

19 10.76 2.5201424 13.14 0.954755
23 13.48 3.15720442 12.95 0.940949
25 9.651 2.26016489 8.61 0.625604

THD 13.54 11.92

Condition Cruise
Temp 90
Speed 25

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund

1 423.16 100 1369.92 100 3596.77 100

5 50.23 11.8702146 184.77 13.48765 539.54 15.00068
7 26.9 6.35693355 89.18 6.509869 264,77 7.361327

11 18.57 4.388411 39.58 2.88922 118.67 3.299349

13 11.44 2.70346914 30.91 2.256336 91.25 2.536998
17 6.99 1.65185745 12.52 0.913922 37.66 1.047051
19 14.26 3.36988373 8.02 0.585436 24.83 0.690342
23 0.75 0.17723792 1.09 0.079567 33.91 0.94279
25 0.11 0.0259949 2.11 0.154024 6.11 0.169875

THD 14.74 1 15.28 17.04

Condition Cruise
Temp 90
Speed 30

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund
1 433.84 100 1334.91 100 3723.09 100

5 46.43 10.9722091 182.49 13.32122 543.65 15.11495
7 33.98 8.03005955 96.05 7.011358 289 8.034987

11 12.22 2.88779658 28.2 2.058514 85.44 2.375465

13 10.28 2.42934115 18.83 1.374533 57.18 1.58976
17 2.48 0.58606674 1.89 0.137964 5.61 0.155973
19 5.57 1.31628698 4.72 0.344546 14.61 0.406198
23 6.85 1.61877304 7.72 0.563537 23.5 0.653364
25 7.25 1.71329993 7.17 0.523388 21.79 0.605821

THD 13.89 15.49 16.56

107



Table 8-3 Cruise Loading, 10 Degree, Baseline System
Condition Cruise
TernP 10
Speed 0

BusVoltage % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund
1 439.45 100 883.66 100
5 7.06 1.60655365 28.03 3.17203449
7 3.16 0.71908067 12.16 1.37609488

11 8.71 1.98202298 14.16 1.60242627
13 5.25 1.19467516. 7.96 0.90079895
17 4.57 1.03993628 4.17 0.47190096
19 3.97 0.90340198 3.39 0.38363171
23 1.11 0.25258846 0.75 0.08487427
25 1.43 0.32540676 0.81 0.09166421

THD 3.24 3.96

Condition Cruise
Ternp 10
Speed 15

Bus Voltageý % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund
1 424.77 100 1506.89 100
5 38.71 9.11316713 142.38 9.44859943
7 5.58 1.31365209 15.58 1.03391754

11 28.59 6.73070132 51.97 3.44882506
13 12.39 2.91687266 19.85 1.31728262
17 13.2 3.10756409 17.35 1.151378
19 8.34 1.9634155 10.77 0.71471707
23 12.59 2.96395696 12.48 0.82819582
25 8.89 2.09289733 8.44 0.56009397

THD 12.75 10.28

Condition Cruise
Temp 10
Speed 25

Bus Voltage % of Fund Gen Current (A) % of Fund Gen Current (kA) 1% of Fund
1 432.89 100 1374.29 100 3831.2 100
5 45.22 10.4460718 184.23 13.4054676 538.26 14.049384
7 30.48 7.04104969 88.11 6.41131057 261.26 6.81927333

11 17.29 3.99408626 38.49 2.80071892 114.98 3.00114847
13 16.92 3.9086142 28.89 2.1021764 86.34 2.253602
17 8.75 2.02129871 12.02 0.87463345 36.09 0.94200251
19 5.64 1.3028714 7.9 0.57484228 23.86 0.62278137
23 0.33 0.07623184 1.01 0.07349249 3.29 0.08587388
25 1.67 . 0.3857793 1.59 0.1156961 4.56 0.11902276

THD 13.86 15.13 1 15.90

Condition Cruise
Temp 10
Speed 30

Bus Voltageý % of Fund Gen Current (A) i% of Fund Gen Current (kA) % of Fund
1 431.1 100 1343.14 100 4083.56 100
5 45.93 10.6100857 181.36 13.1966324 543.38 14.1830236
7 32.47 7.50075077 95.34 6.9374004 284.72 7.43161412

11 11.75 2.71431542 26.78 1.94864257 82.28 2.14762999
13 9.74 2.24999422 18.16 1.3214096 54.38 1.41939862
17 2.19 0.50590219 2.42 0.17609093 7.38 0.19262894
19 5.1 1.17812839 4.66 0.33908418 13.72 0.35811234
23 6.37 1.47150546 7.31 0.53191102 22.79 0.59485279
25 6.42 1.48305574 6.67 0.48534152 19.59 0.51132804

THD 13.61 15.28 15.06
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Table 8-4 Battle Loading, 90 Degree, Baseline System
Condition Battle
Ternp 90
Speed 0

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund
1 430.01 100 1120.02 100
5 11.39 2.64877561 45.77 4.086534

7 6.86 1.59531174 21.39 1.909787
11 5.78 1.34415479 10.51 0.938376
13 2.38 0.5534755 5.09 0.454456
17 5.54 1.28834213 4.94 0.441064
19 3.11 0.72323899 3.58 0.319637
23 2.92 0.67905398 2.13 0.190175
25 2.57 0.59766052 1.83 0.16339

THD 3.83 1 4.66 1 1

Condition Battle
Temp 90
Speed 15

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund

1 422.02 100 1743.29 100
5 35.02 8.29818492 129.19 7.4107
7 2.11 0.4999763 3.74 0.214537

11 27.17 6.4380835 50.49 2.896248
13 12.42 2.94298848 21.55 1.236168
17 13.38 3.17046585 18.24 1.046298
19 6.98 1.65395005 9.32 0.534621
23 8.66 2.05203545 9.26 0.531181
25 7.64 1.81034074 7.77 0.4457091

THD 11.73 8.14 1

Condition Battle
Temp 90
Speed 25

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund
1 429.68 100 1425.58 100 4205.67 100
5 45.96 10.6963322 190.74 13.37982 545.06 12.96012288
7 30.58 7.11692422 90.27 6.33216 262.62 6.244427166

11 16.46 3.83075777 37.56 2.634717 110.47 2.626692061
13 15.41 3.58638987 27.92 1.958501 79.16 1.882220907
17 7.49 1.7431577 10.39 0.728826 30.56 0.726638086
19 4.33 1.00772668 6.34 0.444731 18.89 ,0.449155545
23 1.03 0.23971327 2.19 0.153622 6.57 0.156217678
25 1.68 0.39098864 2.17 0.152219 6.51 0.154791032

]HD 13.89 15.02 14.611

Condition Battle
Temp 90
Speed 30

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund
1 427.95 100 1430.28 100 3972.9 100
5 45.83 10.6660771 185.86 13.0375 553.42 13.15890215
7 31.94 7.43343884 95.05 6.667462 285.9 6.797965604

11 11.15 2.59495438 27.34 1.917816 82.6 1.964015246
13 8.77 2.04105381 16.46 1.154618 49.98 1.188395666
17 2.28 0.53062744 2.75 0.192904 8.36 0.198779267
19 5.14 1.19623906 5.45 0.382301 16.52 0.392803049
23 6.22 1.4475889 8.28 0.580816 25.11 0.597051124
25 5.88 1.36846025 6.56 0.460164 19.98 0.475072937

THD 13.55 14.63 15.70
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Table 8-5 Battle Loading, 10 Degrees, Baseline System
Condition Battle
TIemp 90
Speed 0

Bus Voltage(Volts) %of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund
1 436.25i 100 805.93 100
5 7.34 1.682521 28.99 3.597087

7 3.29 0.754155 12.48 1.548522
11 9.2 2.108883 14.76 1.831425
13 5.57 1.276791 8.25 1.023662
17i 4.97 1.139255 4.56 0.565806
19 4.38 1.004011 3.73 0.462819
23 1.25 0.286533 0.88 0.109191
25 1.67 0.3828081 0.96 0.119117

THID 1 _3.461_1 4.50

Condition Battle
Temp 90
Speed 15

_....... Bus Volta e Volts 7 % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund

1 426.54 100 1426.47 100
5 39.94 9.363717 145.61 10.20772
7 5.92 1.387912 15.78 1.106227

11 30.18 7.075538 53.66 3.761734
13 13.04 3.057158 20.09 1.408372
17 14.52 3.404136 18.47 1.294805 1 1
19 9.35 2.192057 11.53 0.808289
23 13.99 3.27988 13.18 0.923959
25 10.09 2.365546 9.08 0.6365361

TH 1 13.36 11.12 1 _1

Condition "Battle
TIemp 90
Speed 25

_........ Bus Voltage(Volts) %of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund
1 435.14 100 1376.41 100 3684.71 100
5 45.98 10.56671 185.86 13.50324 542.87 14.73305
7 30.93 7.108057 89.21 6.481354 264.75 7.185097

11 17.77 4.083743 38.64 2.807303 115.81 3.142988
13 17.55 4.033185 29.36 2.133085 88.19 2.393404
17 8.81 2.024636 11.89 0.863841 35.74 0.969954
19 5.79 1.330606 7.92 0.57541 23.82 0.646455
23 0.18 0.041366 1.17 0.085004 3.59 0.097431
25 0.24 0.055155 1.71 0.124236 5.21 0.141395

THD 14.04 15.24 16.67

Condition Battle
Tem p 90
speed 30

IIIIIII . Bus Voltage(Volts) % of Fund Gen Current A) % of Fund Gen Current (kA) % of Fund
1 433.42 100 1416.16 100 3668.44 100
5 46.36 10.65404 183.86 13.35794 547.19 14.85029
7 32.89 7.558487 95.19 6.915817 286.15 7.765876

11 11.86 2.72556 27.85 2.02338 84.33 2.288647
13 10.06 2.3119 17.81 1.293946 54.13 1.469044
17 2.24 0.514777 23.23 1.687724 7.01 0.190246
19 5.32 1.222595 5.13 0.372709 15.43 0.418758
23 6.16 1.415636 8.08 0.587034 24.45 0.663553
25 6.66 1.530542 6.65 0.483141 20.23 0.549026

THD 13.69 14.76 16.84
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Table 8-6 Anchor Loading, Baseline System

Condition Anchor
Temp 90
Speed 0

.Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund
1 442.88 100 835.95 100
5 7.35 1.659592 27.83 3.32914648
7 3.61 0.815119 10.42 1.246486034

11 10.16 2.294075 16.67 1.994138405
13 5.34 1.205744 7.9 0.945032598
17 2.89 0.652547 2.75 0.328967043
19 2.82 0.636741 2.57 0.307434655
23 1.95 0.4403 1.78 0.212931395
25 1.43 0.322887 1.39 0.1662778871

THD 3.35 4.21 1

Condition Anchor
Temp 10
Speed 0

Speed Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (kA) % of Fund
1 439.98 100 843.69 100
5 7.59 1.725078 28.59 3.388685418
7 3.53 0.802309 10.34 1.225568633

11 10.01 2.275103 16.63 1.97110313
13 5.31 1.206873 7.82 0.926880726
17 2.86 0.65003 2.76 0.327134374
19 2.85 0.647757 2.58 0.305799524
23 1.88 0.427292 1.73 0.205051618
25 1.35 0.306832 1.28 0.151714492

THD 3.37 1 4.24 1
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Table 8-7 Line Commutated System, 90 Degree Day, Cruise Loading
Condition Cruise
Temnp 90
Speed 115

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (A) % of Fund
1 442.22 100 1189.59 100
5 21.93 4.95907 96.12 8.080095
7 11.72 2.650265 37.61 3.161593

11 14.88 3.364841 24.58 2.066258
13 9.98 2.256795 14.93 1.255054
17 1.83 0.413821 0.74 0.062206
19 1.27 0.287187 0.25 0.021016
23 3.63 0.820858 2.76 0.232013
25 3.56 0.805029 2.53 0.212678

THD 7.03 8.98 1 1 1

Condition Cruise
Temnp 90
Speed 25

-0 Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (A) % of Fund
1 441.32 100 1378.92 100 2886.83 100
5 36.52 8.275174 140.28 10.17318 409.58 14.18788
7 21.06 4.772047 71.04 5.151858 210.75 7.300395

11 8.64 1.957763 19.17 1.390218 57.42 1.989033
13 1.91 0.432793 11.03 0.799901 33.2 1.15005
17 6.81 1.543098 9.52 0.690395 28.81 0.99798
19 2.82 0.638992 7.99 0.579439 24.15 0.836558
23 2.79 0.632194 5.17 0.374931 15.62 0.541078
25 1.13 0.25605 3.96 0.287181 11.91 0.412563-I

THD 9.88 11.48 15.98

Condition Cruise
"lemp 9(0
Speed 30

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (A) % of Fund
1 443.14 100 1366.22 100 3198.88 100
5 33.95 7.661236 141.01 10.32118 419.92 13.12709
7 22.76 5.136074 68.05 4.980896 204.78 6.401616

11 2.82 0.636368 9.92 0.726091 30.16 0.94283
13 5.21 1.175701 8.82 0.645577 26.83 0.838731
17 6.74 1.520964 9.56 0.699741 29.87 0.933764
19 4.35 0.981631 6.34 0.464054 19.2 0.60021
23 3.01 0.679244 2.78 0.203481 8.45 0.264155
25 2.35 0.530306 2.81 0.205677 8.55 0.267281

THD 9.49 1 11.46 1 14.551
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Table 8-8 Filter System Tabulated Results

Condition Cruise
Ternp 90
Speed 15

,Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (A) % of Fund

1 435.97 100 1283.73 100
5 2.52 0.578021 1.29 0.100488
7 2.49 0.57114 5.53 0.430776

11 18.22 4.179187 31.85 2.481051
13 6.88 1.57809 10.7 0.833509
17 8.67 1.988669 11.6 0.903617
19 2.6 0.596371 4.09 0.318603
23 8.2 -1.880863 8.56 0.666807,
25 6 1.376241 5.55 0.4323341

THD 5.50 2.93 1

Condition Cruise
Temp 90
Speed 25

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (A) % of Fund
1 436 100 1378.92 100 2886.83 100
5 5.98 1.37156 140.28 10.17318 409.58 14.18788
7 20.12 4.614679 71.04 5.151858 210.75 7.300395

11 17.29 3.965596 19.17 1.390218 57.42 1.989033
13 26.47 6.071101 11.03 0.799901 33.2 1.15005
17 11.25 2.580275 9.52 0.690395 28.81 0.99798
19 9.07 2.080275 7.99 0.579439 24.15 0.836558
23 6.56 1.504587 5.17 0.374931 15.62 0.541078
25 4.88 1.119266 3.96 0.287181 11.91 0.412563

THD 9.46 11.48 15.98

Condition Cruise
Temp 90
Speed 30

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (A) % of Fund
1 432.14 100 1366.22 100 3198.88 100
5 5.99 1.386125 141.01 10.32118 419.92 13.12709
7 28.45 6.583515 68.05 4.980896 204.78 6.401616

11 14.56 3.369278 9.92 0.726091 30.16 0.94283
13 11.25 2.603323 8.82 0.645577 26.83 0.838731
17 14.37 3.325311 9.56 0.699741 29.87 0.933764
19 3.21 0.742815 6.34 0.464054 19.2 0.60021
23 5.22 1.207942 2.78 0.203481 8.45 0.264155
25 5.9 1.365298 2.81 0.205677 8.55 0.267281

THD 8.82 11.46 1 14.55

113



Table 8-9 12 Pulse System Tabulated Results

Condition Cruise
Temp 90
Speed 15

-
Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (A) % of Fund

1 443.98 100 1254.38 100
5 5.47 1.232037 22.45 1.789729
7 1.55 0.349115 8.95 0.7135

11 19.54 4.401099 32.98 2.629187
13 13.64 3.07221 19.98 1.592819
17 4.02 0.905446 3.93 0.313302
19 4.22 0.950493 3.64 0.290183
23 4.66 1.049597 5.17 0.412156
25 4.42 0.99554 4.36 0.347582

THD 5.84 3.69

Condition Cruise
Temp 90

Speed 25

Bus Voltage(Volts) % of Fund Gen Current (A) % of Fund Gen Current (A) % of Fund
1 429.4 100 1019.66 100 3734.27 100
5 3.97 0.924546 13.24 1.298472 25.53 0.683668
7 0.4 0.093153 5.58 0.547241 7.08 0.189595

11 26.2 6.101537 44.03 4.318106 137.67 3.686664
13 20.45 4.762459 30.39 2.980405 92.63 2.480538
17 2.07 0.482068 2.67 0.261852 4.15 0.111133
19 2.52 0.586865 2.55 0.250083 3.96 0.106045
23 4.18 0.973451 3.37 0.330502 12.24 0.327775
25 4.15 0.966465 4.12 0.404056 11.04 0.29564

THD 7.93 1 5.46 4.52

Condition Cruise
Temp 90
Speed 30

Bus Voltale(Volts) .% of Fund Gen Current (A) % of Fund Gen Current (A) % of Fund

1 440.87 100 1302.76 100 3515.63 100
5 3.38 0.766666 8.04 0.617151 19.87 0.56519
7 0.78 0.176923 2.8 0.214928 5.77 0.164124

11 24.75 5.6139 42.36 3.251558 13.02 0.370346
13 17.26 3.914986 26.75 2.053333 78.87 2.24341
17 1.96 0.444575 1.69 0.129725 2.97 0.08448
19 2.25 0.510355 0.53 0.040683 3.52 0.100124
23 8.23 1.866763 8.94 0.686235 2.57 0.073102
25 7.65 1.735205 6.88 0.52811 2.22 0.063147-I

THD 7.36 3.99 2.35[M
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